Adaptive Visual Assistance System for Enhancing the Driver Awareness of Pedestrians

Autor: Indira Thouvenin, Minh Tien Phan, Vincent Fremont
Přispěvatelé: École Centrale de Nantes (ECN), Autonomie des Robots et Maîtrise des interactions avec l’ENvironnement (ARMEN), Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Compiègne (UTC)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Human-Computer Interaction
International Journal of Human-Computer Interaction, Taylor & Francis, 2019, 36 (9), pp.856-869. ⟨10.1080/10447318.2019.1698220⟩
ISSN: 1044-7318
1532-7590
DOI: 10.1080/10447318.2019.1698220⟩
Popis: International audience; In the past decade, Pedestrian Collision Warning Systems have been proposed to detect pedestrians and warn drivers of imminent collision. However, such systems are often limited by eye-off-road and cognitive overload problems. Head Up displays with augmented reality are being considered as a key technology for changing drivers' user experiences. In this paper, we propose a new visual assistance system that can enhance drivers' perception by dynamically directing attention to pedestrians to avoid collisions using Augmented Reality cues. The proposed system takes into account driver behaviors through vehicle driving signals analysis, in order to warn it at the right moments. To that end, we statistically model correct and incorrect driver behaviors in situations with pedestrians. Based on this model, a warning visual metaphor is displayed if unawareness is detected and a driving simulator was used to evaluate the concept. The experimental results suggest that our proposed adaptive visual aids can enhance driver awareness of pedestrians in critical situations.
Databáze: OpenAIRE