Gap suppression at a Lifshitz transition in a multi-condensate superconductor
Autor: | Gervasi Herranz, Nicolas Bergeal, Lara Benfatto, Marco Grilli, F. Couëdo, Cheryl Feuillet-Palma, Florencio Sánchez, A. Jouan, Jerome Lesueur, Guilhem Saiz, Gyanendra Singh, Sergio Caprara, Mateusz Scigaj |
---|---|
Přispěvatelé: | Région Ile-de-France, Centre National de la Recherche Scientifique (France), Agence Nationale de la Recherche (France), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat de Catalunya, Ministero degli Affari Esteri e della Cooperazione Internazionale, European Commission, European Cooperation in Science and Technology |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Electronic properties and materials
Context (language use) 02 engineering and technology 010402 general chemistry 01 natural sciences Degrees of freedom (mechanics) Superconducting properties and materials Superfluidity Condensed Matter::Materials Science Surfaces interfaces and thin films Atomic orbital Condensed Matter::Superconductivity General Materials Science Electronic band structure Semiconductor quantum wells Quantum well Phase diagram Condensed Matter::Quantum Gases Superconductivity Physics Condensed matter physics Condensed Matter::Other Mechanical Engineering General Chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 0104 chemical sciences heterostructures multiband superconductors Mechanics of Materials Quantum dot 0210 nano-technology |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Nature materials (2019). doi:10.1038/s41563-019-0354-z info:cnr-pdr/source/autori:G. Singh, A. Jouan, G. Herranz, M. Scigaj, F. Sánchez, L. Benfatto, S. Caprara, M. Grilli, G. Saiz, F. Couëdo, C. Feuillet-Palma, J. Lesueur, N. Bergeal/titolo:Gap suppression at a Lifshitz transition in a multi-condensate superconductor/doi:10.1038%2Fs41563-019-0354-z/rivista:Nature materials (Print)/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume |
DOI: | 10.1038/s41563-019-0354-z |
Popis: | In multi-orbital materials, superconductivity can exhibit several coupled conden- sates. In this context, quantum con nement in two-dimensional superconducting oxide interfaces o ers new degrees of freedom to engineer the band structure and selectively control 3d-orbitals occupancy by electrostatic doping. Here, we use resonant microwave transport to extract the super uid sti ness of the (110)-oriented LaAlO3/SrTiO3 in- terface in the entire phase diagram. We evidence a transition from single-condensate to two-condensate superconductivity driven by continuous and reversible electrostatic doping, which we relate to the Lifshitz transition between 3d-bands based on numerical simulations of the quantum well. We nd that the superconducting gap is suppressed while the second band is populated, challenging the Bardeen-Cooper-Schrie er theory. We ascribe this behavior to the existence of superconducting order parameters with opposite signs in the two condensates, due to a repulsive coupling. Our ndings o er an innovative perspective on the possibility to tune and control multiple-orbitals physics in superconducting interfaces. The authors thank K. Behnia and J. Lorenzana for useful discussions. This work was supported by the Région Ile-de-France in the framework of CNano IdF, OXYMORE and Sesame programmes, by CNRS through a PICS programme (S2S) and ANR JCJC (Nano-SO2DEG). This work was supported by the Spanish MAT2017-85232-R, MAT2014-56063-C2-1-R and Severo Ochoa SEV-2015-0496 grants and the Generalitat de Catalunya (2017 SGR 1377). This work was supported by the Italian MAECI under the Italia–India collaborative project SUPERTOP-PGR04879. The authors acknowledge funding from the project Quantox of QuantERA ERA-NET Cofund in Quantum Technologies (grant agreement no. 731473) implemented within the European Union’s Horizon 2020 Programme. The authors also acknowledge the COST project Nanoscale Coherent Hybrid Devices for Superconducting Quantum Technologies–Action CA16218. |
Databáze: | OpenAIRE |
Externí odkaz: |