First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities

Autor: Munirah Alotaibi, Mohamed Jleli, Bessem Samet, Calogero Vetro
Přispěvatelé: Alotaibi M., Jleli M., Samet B., Vetro C.
Rok vydání: 2022
Předmět:
Zdroj: Zeitschrift für angewandte Mathematik und Physik. 73
ISSN: 1420-9039
0044-2275
DOI: 10.1007/s00033-022-01784-y
Popis: We study the large-time behavior of solutions for the inhomogeneous nonlinear Schrödinger equation $$\begin{aligned} iu_t+\Delta u=\lambda |u|^p+\mu |\nabla u|^q+w(x),\quad t>0,\, x\in {\mathbb {R}}^N, \end{aligned}$$ i u t + Δ u = λ | u | p + μ | ∇ u | q + w ( x ) , t > 0 , x ∈ R N , where $$N\ge 1$$ N ≥ 1 , $$p,q>1$$ p , q > 1 , $$\lambda ,\mu \in {\mathbb {C}}$$ λ , μ ∈ C , $$\lambda \ne 0$$ λ ≠ 0 , and $$u(0,\cdot ), w\in L^1_{\mathrm{loc}}({\mathbb {R}}^N,{\mathbb {C}})$$ u ( 0 , · ) , w ∈ L loc 1 ( R N , C ) . We consider both the cases where $$\mu =0$$ μ = 0 and $$\mu \ne 0$$ μ ≠ 0 , respectively. We establish existence/nonexistence of global weak solutions. In each studied case, we compute the critical exponents in the sense of Fujita, and Lee and Ni. When $$\mu \ne 0$$ μ ≠ 0 , we show that the nonlinearity $$|\nabla u|^q$$ | ∇ u | q induces an interesting phenomenon of discontinuity of the Fujita critical exponent.
Databáze: OpenAIRE