Machine Learning Detects Pairwise Associations between SOI and BIS/BAS Subscales, making Correlation Analyses Obsolete

Autor: Prossinger, Hermann, Binter, Jakub, Machová, Kamila, Říha, Daniel, Boschetti, Silvia
Přispěvatelé: Ahram, Tareq, Taiar, Redha
Rok vydání: 2022
Předmět:
Zdroj: Human Interaction & Emerging Technologies (IHIET-AI 2022): Artificial Intelligence & Future Applications, nestránkováno. (2022)
ISSN: 2771-0718
DOI: 10.54941/ahfe100903
Popis: We use AI techniques to statistically rigorously analyze combinations of query responses of two personality-related questionnaires. One probes aspects of a participant’s tendency for uncommitted sexual behavior (SOI-R) and the other avoidance of aversive outcomes together with approaches to goal orientated outcomes (BIS/BAS). We use one-hot encoding, dimension reduction with a neural network (a seven-layer auto-encoder) and two clustering algorithms to detect associations between the twelve combinations of SOI and BIS/BAS groups. We discover that for most combinations more than one association exists. Traditional, fallacious statistical methods cannot find these outcomes.
Databáze: OpenAIRE