Evolution of cooperativity in the spin transition of an iron(II) complex on a graphite surface

Autor: Wolfgang Kuch, Matthias Bernien, Lalminthang Kipgen, Andrew J. Britton, Felix Tuczek, Hanjo Ryll, Eugen Weschke, Christian Lotze, Holger Naggert, Enrico Schierle, Lucas M. Arruda, Chen Luo, Florin Radu, Sascha Ossinger, Fabian Nickel
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Nature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
Nature Communications
ISSN: 2041-1723
Popis: Cooperative effects determine the spin-state bistability of spin-crossover molecules (SCMs). Herein, the ultimate scale limit at which cooperative spin switching becomes effective is investigated in a complex [Fe(H2B(pz)2)2(bipy)] deposited on a highly oriented pyrolytic graphite surface, using x-ray absorption spectroscopy. This system exhibits a complete thermal- and light-induced spin transition at thicknesses ranging from submonolayers to multilayers. On increasing the coverage from 0.35(4) to 10(1) monolayers, the width of the temperature-induced spin transition curve narrows significantly, evidencing the buildup of cooperative effects. While the molecules at the submonolayers exhibit an apparent anticooperative behavior, the multilayers starting from a double-layer exhibit a distinctly cooperative spin switching, with a free-molecule-like behavior indicated at around a monolayer. These observations will serve as useful guidelines in designing SCM-based devices.
Spin-crossover molecules offer a potential route towards molecular spintronics, but retaining the bistability of the spin state upon surface deposition is challenging. Here, the authors study the spin-crossover behaviours of an Fe(II) complex deposited on graphite, determining the scale limit at which cooperative spin switching becomes effective.
Databáze: OpenAIRE