DECOMPOSITION OF GEOMETRIC CONSTRAINT SYSTEMS: A SURVEY

Autor: Gilles Trombettoni, Christophe Jermann, Bertrand Neveu, Pascal Mathis
Přispěvatelé: Laboratoire d'Informatique de Nantes Atlantique (LINA), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Constraints solving, optimization and robust interval analysis (COPRIN), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (LSIIT), Centre National de la Recherche Scientifique (CNRS), CNRS MathSTIC
Rok vydání: 2006
Předmět:
Zdroj: International Journal of Computational Geometry and Applications
International Journal of Computational Geometry and Applications, 2006, 16 (5-6), pp.379-414. ⟨10.1142/S0218195906002105⟩
ISSN: 1793-6357
0218-1959
DOI: 10.1142/s0218195906002105
Popis: Significant progress has been accomplished during the past decades about geometric constraint solving, in particular thanks to its applications in industrial fields like CAD and robotics. In order to tackle problems of industrial size, many solving methods use, as a preprocessing, decomposition techniques that transform a large geometric constraint system into a set of smaller ones. In this paper, we propose a survey of the decomposition techniques for geometric constraint problems . We classify them into four categories according to their modus operandi, establishing some similarities between methods that are traditionally separated. We summarize the advantages and limitations of the different approaches, and point out key issues for meeting industrial requirements such as generality and reliability.
Databáze: OpenAIRE