Comparative Study of Parameter Selection for Enhanced Edge Inference for a Multi-Output Regression model for Head Pose Estimation
Autor: | Asiri Lindamulage, Nuwan Kodagoda, Shyam Reyal, Pradeepa Samarasinghe, Pratheepan Yogarajah |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | Magnitude-based pruning is a technique used to optimise deep learning models for edge inference. We have achieved over 75% model size reduction with a higher accuracy than the original multi-output regression model for head-pose estimation. Conference:- in TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON) |
Databáze: | OpenAIRE |
Externí odkaz: |