Investigation of the fs-micromachining process in GaN and diamond

Autor: Lucas Konaka Nolasco
Přispěvatelé: Cleber Renato Mendonça, Antonio Riul Júnior, Sebastião Pratavieira
Rok vydání: 2021
Zdroj: Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
DOI: 10.11606/d.18.2021.tde-22042021-165900
Popis: Semiconductor materials are essential for novel technology development in optoelectronic and photonic devices. Among these types of materials, diamond and GaN stand out given their high bandgap and optimal electronic and thermal properties. Amidst the many material processing techniques, the femtosecond laser pulses micromachining is employed due to its high precision and ability to create microstructures either on the surface or bulk of a material. Thus, in this dissertation, we have studied the fundamentals of fs-micromachining process in both GaN and CVD diamond at 343, 515 and 1030 nm. More specifically, we have examined the incubation effect: the damage threshold fluence (minimal fluence necessary to produce damage in the material) decreases with the number of femtosecond pulses applied per sample spot. The threshold fluence was determined through the zero damage method, which consists of using Gaussian intensity profiles with distinct energies in a material surface. Hence, the incubation curves were obtained for both materials and were fitted by an exponential defect model, which correctly predicts the saturation of the threshold fluence observed in the high-pulse superposition region. The model also indicates through its incubation parameter (k) the efficiency by which the fluence reaches the saturation: the higher its value, the less pulses are necessary. For the GaN sample, k = (0.4 ± 0.2) for 343 nm, k = (0.07 ± 0.01) for the green (515 nm) and k = (0.02 ± 0.01) for the IR case (1030 nm). In CVD diamond: k = (0.13 ± 0.04) for the UV, k = (0.3 ± 0.1) for 515 nm and k = (0.14 ± 0.03) for the 1030 nm excitation wavelength. A theoretical model, which assumes that only multiphoton and avalanche absorption are present, was used to compare its results of the single pulse damage threshold fluence to our experimental data. Through a numerical simulation based on this model, we determined the threshold fluences for GaN at all wavelengths, resulting in a satisfactory agreement to most experimental data, except at 1030 nm. This discrepancy was explained by determining the Keldysh parameter, which indicated that both multiphoton and tunneling absorption are present at this wavelength in GaN – a process that is not considered by the model. As for the CVD diamond, we also established good results for the UV (343 nm) and green (515 nm) excitation wavelengths, but due to the lack of absorption cross-section data at 1030 nm (required for the simulation), we resorted to an alternative method using the same model to determine the five-photon absorption cross-section (σ5), resulting in σ5 = 5×10-170 m10 s 4 photon-4, which is in good agreement with other five-photon absorption cross-sections of other materials in the literature. Hence, this study could prove important in improving the femtosecond micromachining processing technique in both GaN and diamond. Materiais semicondutores são essenciais para o desenvolvimento de novas tecnologias em dispositivos optoeletrônicos e fotônicos. Dentre esse tipo de material, o diamante e o GaN se destacam devido a sua banda larga e interessantes propriedades eletrônicas e térmicas. Dentre as várias técnicas de processamento de materiais, a microfabricação via pulsos de femtossegundos é empregada devido a sua alta precisão e habilidade de fabricar microestruturas tanto na superfície como no volume de materiais. Portanto, nesta dissertação nós estudamos os aspectos fundamentais do processo de microfabricação via pulsos de femtossegundos no GaN e diamante CVD em 343, 515 e 1030 nm. Mais especificamente, examinamos o efeito de incubação: o limiar de fluência de dano (fluência mínima necessária para causar dano na superfície de um dado material) decresce com o aumento do número de pulsos de femtossecundos aplicados num mesmo ponto. A fluência de limiar foi determinada através do método de dano zero, o qual consiste em aplicar perfis de intensidades Gaussianos com energias distintas na superfície de um material. Assim, as curvas de incubação foram obtidas para ambas amostras e ajustadas pelo modelo de defeito exponencial, o qual previu corretamente a saturação da fluência de limiar na região de alta sobreposição de pulsos. Esse modelo ainda indica, através do parâmetro de incubação (k), a eficiência pelo qual a fluência atinge a sua saturação: quanto maior o seu valor, menos pulsos são necessários. Para a amostra de GaN, k = (0.4 ± 0.2) em 343 nm, k = (0.07 ± 0.01) em 515 nm e k = (0.02 ± 0.01) para o caso do infravermelho (1030 nm). No diamante CVD: k = (0.13 ± 0.04) no UV (343 nm), k = (0.3 ± 0.1) para o verde (515 nm) e k = (0.14 ± 0.03) para a excitação em 1030 nm. Um modelo teórico, que assume que apenas a absorção multifotônica e avalanche ocorrem, foi utilizado com o intuito de comparar os resultados simulados da fluência de limiar de um pulso único com os dados experimentais obtidos. Através de uma simulação numérica baseada neste modelo, nós determinamos os valores da fluência de limiar de nado do GaN para todos os comprimentos de onda, resultando numa concordância satisfatória com a maioria dos dados experimentais, exceto em 1030 nm. Tal discrepância foi explicada pela determinação do parâmetro de Keldysh, que indicou que tanto a absorção via tunelamento quanto multifotônica estão presentes neste comprimento de onda no GaN – um processo não considerado pelo modelo. Já para o diamante, também estabelecemos bons resultados para a excitação em UV (343 nm) e verde (515 nm), mas devido à falta de dados sobre a secção de choque de absorção de cinco fótons (necessários para a simulação) na literatura, nós recorremos a um método alternativo utilizando o mesmo modelo para determinar a secção de choque de absorção de cinco fótons do diamante (σ5), resultando em σ5 = 5×10-170 m10 s4 fóton-4, o que está de bom acordo com as secções encontradas na literatura de outros materiais. Desse modo, este estudo pode se provar ser importante para a melhora da técnica de microfabricação via pulsos de femtosegundos tanto no GaN quanto no diamante.
Databáze: OpenAIRE