Social Cloud-Based Cognitive Reasoning for Task-Oriented Recommendation
Autor: | Dina Hussein, Gyu Myoung Lee, Noel Crespi, Son N. Han |
---|---|
Přispěvatelé: | Département Réseaux et Services Multimédia Mobiles (RS2M), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Centre National de la Recherche Scientifique (CNRS), Liverpool John Moores University (.) (Liverpool JMU), Réseaux, Systèmes, Services, Sécurité (R3S-SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP) |
Rok vydání: | 2015 |
Předmět: |
QA75
Ontologies (artificial intelligence) Service (systems architecture) Computer Networks and Communications Computer science media_common.quotation_subject Internet of Things Context (language use) Cloud computing Recommender system Adaptability World Wide Web [INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] Cognition Recommender systems Computer Science (miscellaneous) Context awareness media_common Cognitive science Social network Inference mechanisms business.industry Social networking (online) Computer Science Applications business Software |
Zdroj: | IEEE Cloud Computing IEEE Cloud Computing, IEEE, 2015, 2 (6), pp.10-19. ⟨10.1109/MCC.2015.117⟩ Publons |
ISSN: | 2325-6095 |
DOI: | 10.1109/mcc.2015.117 |
Popis: | The Social Internet of Things (SIoT) is recently being promoted in literature for enabling the integration of devices into users’ daily life. This integration can be achieved by taking advantage of the inter-connectivity and the user-friendliness offered by Social Network Services (SNS). The novel SIoT paradigm opens the door for studying the intelligence mechanisms required to enhance services adaptability. We study the integration of cognitive reasoning into SIoT for providing recommendation of quotidian tasks in smart homes. In order to achieve situation characterization, reasoning about physical as well as social aspects of context is required. Thus, as a service built on top of Social Cloud (SoC), we propose an intelligent recommendation (InRe) framework. This framework applies the reasoning mechanism on context elements which are represented using ontologies. ThigsChat is provided as a proof-of-concept prototype. Initial experiments indicate a considerable improvement in adaptability of recommendation results to users’ situations. |
Databáze: | OpenAIRE |
Externí odkaz: |