BPS Quivers of Five-Dimensional SCFTs, Topological Strings and q-Painlevé Equations
Autor: | Giulio Bonelli, Fabrizio Del Monte, Alessandro Tanzini |
---|---|
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics Nonlinear Sciences - Exactly Solvable and Integrable Systems Rank (linear algebra) 010308 nuclear & particles physics Quiver Statistical and Nonlinear Physics Type (model theory) Symmetry group Topology 01 natural sciences String (physics) Spectrum (topology) Settore FIS/02 - Fisica Teorica Modelli e Metodi Matematici Cluster algebra High Energy Physics::Theory 0103 physical sciences 010307 mathematical physics Quantum field theory Mathematical Physics Mathematics |
Zdroj: | Annales Henri Poincaré. 22:2721-2773 |
ISSN: | 1424-0661 1424-0637 |
DOI: | 10.1007/s00023-021-01034-3 |
Popis: | We study the discrete flows generated by the symmetry group of the BPS quivers for Calabi-Yau geometries describing five dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlev\'e equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $\tau$-functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five dimensional $SU(2)$ pure Super Yang-Mills and $N_f = 2$ on a circle. Comment: 52 pages, 14 figures |
Databáze: | OpenAIRE |
Externí odkaz: |