Characterization of a Connected Object by Its Acoustic Signature

Autor: Bouchaud, François, Vantroys, Thomas, Boé, A.
Přispěvatelé: Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancé - USR 3380 (IRCICA), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Extra Small Extra Safe (2XS), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN ), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), no information, PCMP SigmaCom
Rok vydání: 2022
Předmět:
Zdroj: Lecture Notes in Networks and Systems ISBN: 9783030980146
Future of Information and Communication Conference (FICC) 2022
Future of Information and Communication Conference (FICC) 2022, Mar 2022, San Francisco, United States. pp.19-32, ⟨10.1007/978-3-030-98015-3_2⟩
DOI: 10.1007/978-3-030-98015-3_2
Popis: International audience; With the proliferation of connected objects, the fine identification and the technical characterization of digital devices are one challenge for the monitoring and security of information systems. Connected objects are of different types, and each has different characteristics, whether it is the embedded operating system, their sensors or their firmware version. Connected objects are difficult to identify by non-expert. The activity of a microcontroller generates a set of physical phenomena that can be quantified, observed and exploited. The acoustic emissions resulting from this activity are quantifiable and have been proven to be a formidable means of discrimination and qualification of electronic equipments. In this paper, we present our preliminary work on generating “digital fingerprint" of connected objects by exploiting the emitted acoustic emissions to automatically categorize the devices.
Databáze: OpenAIRE