A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters

Autor: Duke Pauli, Fulton E. Rockwell, Siyu Zhu, Weizhen Liu, Susan J. Riha, Abraham D. Stroock, Ying Sun, N. Michele Holbrook, Warren R. Zipfel, Jeff Melkonian, Piyush Jain, Christine Yao-Yun Chang, Michael A. Gore
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
0027-8424
Popis: Significance Gaps in our ability to document local water relations in leaves compromise our ability to build complete models of leaf and plant function and our understanding of ecophysiological phenomena, such as response and adaptation to drought. Macroscopically, leaf water potential has been shown to impact vegetative growth and yield, susceptibility to disease, and, in extreme drought, plant viability, making it a promising candidate trait to improve water-use efficiency in plants. In this paper, we present a nanoscale sensor (AquaDust) that provides minimally disruptive measurements of water potential in leaves of intact plants at high spatial and temporal resolution. This creates opportunities for improving our understanding of the mechanisms coupling variations in water potential to biological and physical processes.
Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.
Databáze: OpenAIRE