Handling binary classification problems with a priority class by using Support Vector Machines

Autor: Yenny Leal, Cecilio Angulo, Luis Gonzalez-Abril, Haydemar Núñez
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: © 2017 Elsevier B.V. A post-processing technique for Support Vector Machine (SVM) algorithms for binary classification problems is introduced in order to obtain adequate accuracy on a priority class (labelled as a positive class). That is, the true positive rate (or recall or sensitivity) is prioritized over the accuracy of the overall classifier. Hence, false negative (or Type I) errors receive greater consideration than false positive (Type II) errors during the construction of the model. This post-processing technique tunes the initial bias term once a solution vector is learned by using standard SVM algorithms in two steps: First, a fixed threshold is given as a lower bound for the recall measure; second, the true negative rate (or specificity) is maximized. Experiments, carried out on eleven standard UCI datasets, show that the modified SVM satisfies the aims for which it has been designed. Furthermore, results are comparable or better than those obtained when other state-of-the-art SVM algorithms and other usual metrics are considered.
Databáze: OpenAIRE