Toric moment mappings and Riemannian structures

Autor: Gueorgui Mihaylov
Rok vydání: 2008
Předmět:
DOI: 10.48550/arxiv.0810.2799
Popis: Coadjoint orbits for the group SO(6) parametrize Riemannian G-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold.
Comment: 25 pages, 14 figures; Geometriae Dedicata 2012, Toric moment mappings and Riemannian structures, available at http://www.springerlink.com/content/yn86k22mv18p8ku2/
Databáze: OpenAIRE