Toric moment mappings and Riemannian structures
Autor: | Gueorgui Mihaylov |
---|---|
Rok vydání: | 2008 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics 53B20 53C15 17B08 14M25 37J10 Torus Polytope symbols.namesake Differential Geometry (math.DG) Iwasawa manifold symbols FOS: Mathematics Geometry and Topology Mathematics::Differential Geometry Representation Theory (math.RT) Hamiltonian (quantum mechanics) Mathematics::Symplectic Geometry Mathematics - Representation Theory Mathematics Symplectic geometry |
DOI: | 10.48550/arxiv.0810.2799 |
Popis: | Coadjoint orbits for the group SO(6) parametrize Riemannian G-reductions in six dimensions, and we use this correspondence to interpret symplectic fibrations between these orbits, and to analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian structures on the Iwasawa manifold. Comment: 25 pages, 14 figures; Geometriae Dedicata 2012, Toric moment mappings and Riemannian structures, available at http://www.springerlink.com/content/yn86k22mv18p8ku2/ |
Databáze: | OpenAIRE |
Externí odkaz: |