Representations of Lie algebras of vector fields on affine varieties

Autor: Vyacheslav Futorny, Jonathan Nilsson, Yuly Billig
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: For an irreducible affine variety $X$ over an algebraically closed field of characteristic zero we define two new classes of modules over the Lie algebra of vector fields on $X$ - gauge modules and Rudakov modules, which admit a compatible action of the algebra of functions. Gauge modules are generalizations of modules of tensor densities whose construction was inspired by non-abelian gauge theory. Rudakov modules are generalizations of a family of induced modules over the Lie algebra of derivations of a polynomial ring studied by Rudakov. We prove general simplicity theorems for these two types of modules and establish a pairing between them.
Databáze: OpenAIRE