Capability of GLAS/ICESat data to estimate forest canopy height and volume in mountainous forests of Iran

Autor: A. A. Darvishsefat, M Namiranian, Ibrahim Fayad, Valéry Gond, Nicolas Baghdadi, Jean-Stéphane Bailly, Manizheh Rajab Pourrahmati
Přispěvatelé: Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), University of Tehran, AgroParisTech, Laboratoire d'étude des interactions entre sols, agrosystèmes et hydrosystèmes (LISAH), Institut National de la Recherche Agronomique (INRA), Biens et services des écosystèmes forestiers tropicaux : l'enjeu du changement global (Cirad-Es-UPR 105 BSEF), Département Environnements et Sociétés (Cirad-ES), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-AgroParisTech-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Biens et services des écosystèmes forestiers tropicaux : l'enjeu du changement global (UPR BSEF), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Atmospheric Science
010504 meteorology & atmospheric sciences
0211 other engineering and technologies
02 engineering and technology
forêt tropicale
01 natural sciences
LIDAR
Région d'altitude
Forest cover
COUVERT FORESTIER
Mountain forest
Hauteur
Mathematics
U10 - Informatique
mathématiques et statistiques

modèle de croissance forestière
Houppier
On board
FOREST COVER
protection de la forêt
[SDE]Environmental Sciences
Écosystème forestier
F40 - Écologie végétale
Télédétection
gestion des ressources naturelles
FORET DE MONTAGNE
REMOTE SENSING
Combinatorics
Volume measurement
Linear regression
Mesure
Computers in Earth Sciences
TELEDETECTION
021101 geological & geomatics engineering
0105 earth and related environmental sciences
Remote sensing
Ressource forestière
Tree canopy
CANOPEE
15. Life on land
MOUNTAIN FOREST
K10 - Production forestière
Volume (thermodynamics)
Satellite
Dendrométrie
U30 - Méthodes de recherche
Energy (signal processing)
Zdroj: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2015, 8 (11), pp.5246-5261. ⟨10.1109/JSTARS.2015.2478478⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2015, 8 (11), pp.5246-5261. ⟨10.1109/jstars.2015.2478478⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (11), pp.5246-5261. ⟨10.1109/jstars.2015.2478478⟩
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2015.2478478⟩
Popis: The importance of measuring forest biophysical properties for ecosystem health monitoring and forest management encourages researchers to find precise, yet low-cost methods especially in mountainous and large areas. In the present study, geoscience laser altimeter system (GLAS) on board Ice, Cloud, and land Elevation Satellite (ICESat) was used to estimate three biophysical characteristics of forests located in the north of Iran: 1) maximum canopy height ( ${\text {H}_{{\max}}}$ ); 2) Lorey’s height ( ${{\text H}_{\text{Lorey}}}$ ); and 3) forest volume (V). A large number of multiple linear regressions (MLR) and also random forest (RF) regressions were developed using different sets of variables including waveform metrics, principal components (PCs) produced from principal component analysis (PCA) and wavelet coefficients (WCs) generated from wavelet transformation (WT). To validate and compare models, statistical criteria were calculated based on a fivefold cross validation. Best model concerning the maximum height was an MLR ( ${\text {RMSE}} = {5.0}\;{\text m}$ ) which combined two metrics extracted from waveforms (waveform extent “ ${{\text W}_{\text{ext}}}$ ” and height at 50% of waveform energy “ ${{\text H}_{{50}}}$ ”), and one from digital elevation model (terrain index, TI). The mean absolute percentage error (MAPE) of maximum height estimates was 16.4%. For Lorey’s height, a simple MLR (including ${{\text W}_{\text{ext}}}$ and TI) represented the highest performance ( ${\text {RMSE}} = {5.1}\;{\text m}$ , ${\text {MAPE}} = {24.0}\% $ ). Generally, MLR models had a better performance when compared to the RF models. In addition, the accuracy of height estimations using waveform metrics was greater than those based on PCs or WCs. Concerning forest volume, regression models estimating volume directly from GLAS data led to a better result ( ${\text {RMSE}} = {128.8}\;{{\text m}^{3}}/\text {ha}$ ) rather than volume– ${{\text H}_{\text{Lorey}}}$ relationship ( ${\text {RMSE}} = {167.8}\;{{\text m}^{3}}/\text {ha}$ ).
Databáze: OpenAIRE