Estabilidade e caos em sistemas dinamicos não lineares

Autor: Mahla Alvarez, Adelheid Ingeborg
Přispěvatelé: Palhares, Alvaro Geraldo Badan, 1944, Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, UNIVERSIDADE ESTADUAL DE CAMPINAS
Rok vydání: 2021
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
DOI: 10.47749/t/unicamp.1994.100876
Popis: Orientador: Alvaro Geraldo Badan Palhares Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica Resumo: Introduz-se os principais conceitos acerca de sistemas dinámicos não lineares, com énfase em sistemas lineares por partes. Explicam-se os fundamentos de estabilidade,bifurcações e caos. A Transformação de Poincaré para sistemas lineares por partes é introduzida através de alguns exemplos de Engenharia Elétrica. Dois destes exemplos, a discretização do modelo de fase do sistema de controle PLL de segunda ordem com uma perturbação periódica, e o Circuito de Chua com uma não linearidade descontínua, são modelos originais. Como resultado, desenvolvem-seum método para estender a Transformação de Poincaré incluindo pontos onde a trajetória não é transversa à superfície de Poincaré e um método para obter a Transformação de Poincaré de sistemascom uma caracteristica periódica não linear por partes. Modela-se como sistema dinámico discreto um motor C.c. controlado pela técnica PLL. Este modelo é melhor que o modelo de fase continuo para o PLL já existente, porque ele inclui efeitos não modelados previamente, tais como descontinuidades no sinal de erro, a dinâmica do detetor de fase e o comportamento com uma velocidade de saída diferente da velocidade de referência. Obtém-se as regiões estáveis do ponto fixo e das subharmônicas no espaço dos parâmetros. A bifurcação caixas-em-filasé encontrada neste sistema Doutorado Doutor em Engenharia Elétrica
Databáze: OpenAIRE