3D Auger quantitative depth profiling of individual nanoscaled III–V heterostructures

Autor: C. Guedj, Eugénie Martinez, V. Gorbenko, R. Cipro, Jean-Paul Barnes, Thierry Baron, Wael Hourani, Sylvain David, Franck Bassani, J. Moeyaert
Přispěvatelé: Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Journal of Electron Spectroscopy and Related Phenomena
Journal of Electron Spectroscopy and Related Phenomena, 2016, 213, pp.1-10. ⟨10.1016/j.elspec.2016.09.008⟩
Journal of Electron Spectroscopy and Related Phenomena, Elsevier, 2016, 213, pp.1-10. ⟨10.1016/j.elspec.2016.09.008⟩
ISSN: 0368-2048
Popis: The nanoscale chemical characterization of III–V heterostructures is performed using Auger depth profiling below decananometric spatial resolution. This technique is successfully applied to quantify the elemental composition of planar and patterned III–V heterostructures containing InGaAs quantum wells. Reliable indium quantification is achieved on planar structures for thicknesses down to 9 nm. Quantitative 3D compositional depth profiles are obtained on patterned structures, for trench widths down to 200 nm. The elemental distributions obtained in averaged and pointed mode are compared. For this last case, we show that Zalar rotation during sputtering is crucial for a reliable indium quantification. Results are confirmed by comparisons with secondary ion mass spectrometry, photoluminescence spectroscopy, transmission electron microscopy and electron dispersive X-ray spectroscopy. The Auger intrinsic spatial resolution is quantitatively measured using an original methodology based on the comparison with high angle annular dark field scanning transmission electron microscopy measurements at the nanometric scale.
Databáze: OpenAIRE