The density of sets avoiding distance 1 in Euclidean space

Autor: Alberto Passuello, Alain Thiery, Christine Bachoc
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Équipe Théorie des Nombres, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), CPU
Jazyk: angličtina
Rok vydání: 2015
Předmět:
measurable chromatic number
Magnitude (mathematics)
0102 computer and information sciences
Euclidean distance matrix
01 natural sciences
Upper and lower bounds
Theoretical Computer Science
Combinatorics
Mathematics - Metric Geometry
52C10
90C05
90C27
05C69

FOS: Mathematics
Discrete Mathematics and Combinatorics
Mathematics - Combinatorics
Unit distance graph
unit distance graph
0101 mathematics
[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]
Mathematics
Discrete mathematics
Euclidean space
010102 general mathematics
Metric Geometry (math.MG)
linear programming
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Exponential function
Euclidean distance
Computational Theory and Mathematics
010201 computation theory & mathematics
Distance from a point to a plane
Combinatorics (math.CO)
Geometry and Topology
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
theta number
Popis: We improve by an exponential factor the best known asymptotic upper bound for the density of sets avoiding 1 in Euclidean space. This result is obtained by a combination of an analytic bound that is an analogue of Lovasz theta number and of a combinatorial argument involving finite subgraphs of the unit distance graph. In turn, we straightforwardly obtain an asymptotic improvement for the measurable chromatic number of Euclidean space. We also tighten previous results for the dimensions between 4 and 24.
Revised version, to appear in Discrete and Computational Geometry
Databáze: OpenAIRE