Generating Optimized Sparse Matrix Vector Product over Finite Fields
Autor: | Bastien Vialla, Pascal Giorgi |
---|---|
Přispěvatelé: | Exact Computing (ECO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Hong, Hoon, Yap, Chee, ANR-11-BS02-0013,HPAC,Calcul Algébrique Haute-Performance(2011) |
Rok vydání: | 2014 |
Předmět: |
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Theoretical computer science Matrix representation sparse linear algebra Sparse matrix-vector multiplication 010103 numerical & computational mathematics 02 engineering and technology Sparse approximation 01 natural sciences Kernel (linear algebra) Finite field 020204 information systems SpMV Linear algebra 0202 electrical engineering electronic engineering information engineering finite fields 0101 mathematics Heuristics Algorithm Mathematics Sparse matrix |
Zdroj: | Mathematical Software – ICMS 2014 ISBN: 9783662441985 ICMS 4th International Congress on Mathematical Software ICMS: International Congress on Mathematical Software ICMS: International Congress on Mathematical Software, Aug 2014, Séoul, South Korea. pp.685-690, ⟨10.1007/978-3-662-44199-2_102⟩ |
DOI: | 10.1007/978-3-662-44199-2_102 |
Popis: | International audience; Sparse Matrix Vector multiplication (SpMV) is one of the most important operation for exact sparse linear algebra. A lot of research has been done by the numerical community to provide efficient sparse matrix formats. However, when computing over finite fields, one need to deal with multi-precision values and more complex operations. In order to provide highly efficient SpMV kernel over finite field, we propose a code generation tool that uses heuristics to automatically choose the underlying matrix representation and the corresponding arithmetic. |
Databáze: | OpenAIRE |
Externí odkaz: |