Generating Optimized Sparse Matrix Vector Product over Finite Fields

Autor: Bastien Vialla, Pascal Giorgi
Přispěvatelé: Exact Computing (ECO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Hong, Hoon, Yap, Chee, ANR-11-BS02-0013,HPAC,Calcul Algébrique Haute-Performance(2011)
Rok vydání: 2014
Předmět:
Zdroj: Mathematical Software – ICMS 2014 ISBN: 9783662441985
ICMS
4th International Congress on Mathematical Software
ICMS: International Congress on Mathematical Software
ICMS: International Congress on Mathematical Software, Aug 2014, Séoul, South Korea. pp.685-690, ⟨10.1007/978-3-662-44199-2_102⟩
DOI: 10.1007/978-3-662-44199-2_102
Popis: International audience; Sparse Matrix Vector multiplication (SpMV) is one of the most important operation for exact sparse linear algebra. A lot of research has been done by the numerical community to provide efficient sparse matrix formats. However, when computing over finite fields, one need to deal with multi-precision values and more complex operations. In order to provide highly efficient SpMV kernel over finite field, we propose a code generation tool that uses heuristics to automatically choose the underlying matrix representation and the corresponding arithmetic.
Databáze: OpenAIRE