SB-labelings and posets with each interval homotopy equivalent to a sphere or a ball
Autor: | Karola Mészáros, Patricia Hersh |
---|---|
Rok vydání: | 2017 |
Předmět: |
05E45
06A07 Pure mathematics High Energy Physics::Lattice Homotopy 010102 general mathematics 0102 computer and information sciences 16. Peace & justice Möbius function 01 natural sciences Theoretical Computer Science Computational Theory and Mathematics Distributive property 010201 computation theory & mathematics FOS: Mathematics Mathematics - Combinatorics Algebraic Topology (math.AT) Discrete Mathematics and Combinatorics Mathematics - Algebraic Topology Combinatorics (math.CO) Ball (mathematics) 0101 mathematics Tamari lattice Open interval Poset topology Mathematics |
Zdroj: | Journal of Combinatorial Theory, Series A. 152:104-120 |
ISSN: | 0097-3165 |
DOI: | 10.1016/j.jcta.2017.06.001 |
Popis: | We introduce a new class of poset edge labelings for locally finite lattices which we call $SB$-labelings. We prove for finite lattices which admit an $SB$-labeling that each open interval has the homotopy type of a ball or of a sphere of some dimension. Natural examples include the weak order, the Tamari lattice, and the finite distributive lattices. Comment: 16 pages; 3 figures; accepted to Journal of Combinatorial Theory Series A |
Databáze: | OpenAIRE |
Externí odkaz: |