Numerical resolution of an exact heat conduction model with a delay term

Autor: Ramón Quintanilla, M. Campo, José R. Fernández
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
Jazyk: angličtina
Rok vydání: 2019
Předmět:
a priori error estimates
74 Mechanics of deformable solids::74F Coupling of solid mechanics with other effects [Classificació AMS]
Discretization
General Mathematics
74 Mechanics of deformable solids::74K Thin bodies
structures [Classificació AMS]

Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
02 engineering and technology
exact heat condution
01 natural sciences
Calor -- Transmissió -- Models matemàtics
Thermoelastic damping
Heat --Transmission -- Mathematical models
0203 mechanical engineering
35 Partial differential equations::35G General higher-order equations and systems [Classificació AMS]
Applied mathematics
Uniqueness
0101 mathematics
Thermoelasticity
Mathematics
65 Numerical analysis::65M Partial differential equations
initial value and time-dependent initial-boundary value problems [Classificació AMS]

Partial differential equation
delay parameter
Thermal conduction
Backward Euler method
Finite element method
010101 applied mathematics
020303 mechanical engineering & transports
Rate of convergence
finite elements
37 Dynamical systems and ergodic theory::37N Applications [Classificació AMS]
Termoelasticitat
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.
Databáze: OpenAIRE