Single cell heterogeneity in human pluripotent stem cells
Autor: | Seungbok Yang, Yoonjae Cho, Jiwon Jang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pluripotency
Epigenomics Pluripotent Stem Cells Somatic cell Human Embryonic Stem Cells Induced Pluripotent Stem Cells Population Cell Culture Techniques Biology Biochemistry Cell Line Cell therapy Genetic Heterogeneity Cell-to-cell variation Genetics Humans Human pluripotent stem cells Epigenetics education Induced pluripotent stem cell Molecular Biology education.field_of_study Cell Differentiation General Medicine Cell cycle Embryonic stem cell Invited Mini Review Cell biology Heterogeneity Single-Cell Analysis Reprogramming |
Zdroj: | BMB Reports |
ISSN: | 1976-670X |
DOI: | 10.5483/bmbrep.2021.54.10.094 |
Popis: | Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation. [BMB Reports 2021; 54(10): 505-515]. |
Databáze: | OpenAIRE |
Externí odkaz: |