An inexact primal-dual algorithm for semi-infinite programming

Autor: William B. Haskell, Sixiang Zhao, Bo Wei
Rok vydání: 2020
Předmět:
Zdroj: Mathematical Methods of Operations Research. 91:501-544
ISSN: 1432-5217
1432-2994
DOI: 10.1007/s00186-019-00698-2
Popis: This paper considers an inexact primal-dual algorithm for semi-infinite programming (SIP) for which it provides general error bounds. We create a new prox function for nonnegative measures for the dual update, and it turns out to be a generalization of the Kullback-Leibler divergence. We show that, with a tolerance for small errors (approximation and regularization error), this algorithm achieves an $${\mathcal {O}}(1/\sqrt{K})$$ rate of convergence in terms of the optimality gap and constraint violation, where K is the total number of iterations. We then use our general error bounds to analyze the convergence and sample complexity of a specific primal-dual SIP algorithm based on Monte Carlo sampling. Finally, we provide numerical experiments to demonstrate the performance of this algorithm.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje