Depletion of NBR1 in urothelial carcinoma cells enhances rapamycin‐induced apoptosis through impaired autophagy and mitochondrial dysfunction
Autor: | In Ho Chang, Young Mi Whang, Byung Hoon Chi, Myeong Joo Kim, Min Ji Cho, Serk In Park, Gwang Yong Hwang |
---|---|
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
Apoptosis Mitochondrion Biochemistry 03 medical and health sciences 0302 clinical medicine Cell Line Tumor Autophagy Humans Molecular Biology PI3K/AKT/mTOR pathway Sirolimus Kinase Chemistry Intracellular Signaling Peptides and Proteins AMPK Cell Biology ULK1 Mitochondria Neoplasm Proteins Cell biology 030104 developmental biology Urinary Bladder Neoplasms Mitochondrial biogenesis 030220 oncology & carcinogenesis Phosphorylation Gene Deletion |
Zdroj: | Journal of Cellular Biochemistry. 120:19186-19201 |
ISSN: | 1097-4644 0730-2312 |
Popis: | Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer. |
Databáze: | OpenAIRE |
Externí odkaz: |