Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase

Autor: Jonathan Cormier, Foad Naimi, Patrick Villechaise, Sylvain Dubois, Pierre Sallot, Frédéric Bernard, Elodie Drouelle, V. Gauthier-Brunet
Přispěvatelé: Institut Pprime (PPRIME), Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS), Safran Aircraft Engines, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, ENDOmmagement et durabilité ENDO (ENDO), Département Physique et Mécanique des Matériaux (Département Physique et Mécanique des Matériaux), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers-ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, Safran Tech, Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Physique et Propriétés des Nanostructures PPNa (PPNa)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Materials science
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Oxide
Spark plasma sintering
SPS
02 engineering and technology
010402 general chemistry
01 natural sciences
[SPI.AUTO]Engineering Sciences [physics]/Automatic
chemistry.chemical_compound
[SPI]Engineering Sciences [physics]
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
Powder metallurgy
Hot isostatic pressing
Oxidation
Materials Chemistry
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph]
Composite material
Porosity
Microstructure
ComputingMilieux_MISCELLANEOUS
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph]
[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
Mechanical Engineering
[SPI.NRJ]Engineering Sciences [physics]/Electric power
Metals and Alloys
[CHIM.MATE]Chemical Sciences/Material chemistry
[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]
021001 nanoscience & nanotechnology
Grain size
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
0104 chemical sciences
[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
[CHIM.POLY]Chemical Sciences/Polymers
chemistry
Mechanics of Materials
[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]
MAX phase
Grain boundary
0210 nano-technology
Zdroj: Journal of Alloys and Compounds
Journal of Alloys and Compounds, Elsevier, 2020, 826, pp.154062. ⟨10.1016/j.jallcom.2020.154062⟩
ISSN: 0925-8388
Popis: International audience; Spark Plasma Sintering and Hot Isostatic Pressing were used to synthesize coarse-grained and fine-grained Ti3AlC2 specimens. Moreover, Spark Plasma Sintering processing parameters were modified in order to vary the TiC, Al2O3 and TixAly impurity and the porosity contents in the fine-grained samples. The influence of the Ti3AlC2 microstructure on the oxidation resistance was assesed. It is demonstrated that the grain size can drastically modify the oxidation resistance. The higher density of grain boundaries, in fine-grained specimens, increases the number of Al diffusion paths and leads to the formation of a protective alumina scale. In coarse-grained sample, Al diffusion is the rate limiting step of the α−Al2O3 formation and TiO2 is formed simultaneously to alumina. TiC impurities and porosity are demonstrated to be detrimental to the oxidation resistance in the 800 °C–1000 °C temperature range by favouring TiO2 formation. Finally, it is also shown that, for fine-grained specimens, the oxide scale grows very slowly for oxidation times in the range 20–40 days.
Databáze: OpenAIRE