The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of Bi-Close-to-Convex functions connected with the q-convolution
Autor: | Hari M. Srivastava, Sheza M. El-Deeb |
---|---|
Rok vydání: | 2020 |
Předmět: |
bi-close-to-convex functions
Pure mathematics convolution of analytic functions lcsh:Mathematics General Mathematics lcsh:QA1-939 Unit disk faber polynomial expansion Convolution analytic functions poisson operator and pascal distribution operator univalent functions carathéodory lemma bieberbach conjecture (de branges theorem) Convex function Polynomial expansion q-derivative (or q-difference) operator q-convolution Mathematics Analytic function |
Zdroj: | AIMS Mathematics, Vol 5, Iss 6, Pp 7087-7106 (2020) |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2020454 |
Popis: | In this paper, we introduce a new class of analytic and bi-close-to-convex functions connected with q-convolution, which are defined in the open unit disk. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this subclass by using the Faber polynomial expansion method. Several corollaries and consequences of our main results are also briefly indicated. |
Databáze: | OpenAIRE |
Externí odkaz: |