Solving the Group Cumulative Scheduling Problem with CPO and ACO
Autor: | Lucas Groleaz, Christine Solnon, Samba Ndojh Ndiaye |
---|---|
Přispěvatelé: | Origami (Origami), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
050101 languages & linguistics
Sequence Mathematical optimization Job shop scheduling Computer science Ant colony optimization algorithms Tardiness 05 social sciences 02 engineering and technology [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] Constraint (information theory) 0202 electrical engineering electronic engineering information engineering Benchmark (computing) Constraint programming 020201 artificial intelligence & image processing 0501 psychology and cognitive sciences Limit (mathematics) |
Zdroj: | 26th International Conference on Principles and Practice of Constraint Programming 26th International Conference on Principles and Practice of Constraint Programming, Sep 2020, Louvain-la-Neuve, Belgium. pp.620--636 Lecture Notes in Computer Science ISBN: 9783030584740 CP 26th International Conference on Principles and Practice of Constraint Programming, Sep 2020, Louvain-la-Neuve, Belgium. pp.620--636, ⟨10.1007/978-3-030-58475-7_36⟩ |
DOI: | 10.1007/978-3-030-58475-7_36⟩ |
Popis: | International audience; The Group Cumulative Scheduling Problem (GCSP) comes from a real application, i.e., order preparation in food industry. Each order is composed of jobs which must be scheduled on machines, and the goal is to minimize the sum of job tardiness. There is an additional constraint, called Group Cumulative (GC), which ensures that the number of active orders never exceeds a given limit, where an order is active if at least one of its jobs is started and at least one of its jobs is not finished. In this paper, we first describe a Constraint Programming (CP) model for the GCSP, where the GC constraint is decomposed using classical cumulative constraints. We experimentally evaluate IBM CP Optimizer (CPO) on a benchmark of real industrial instances, and we show that it is not able to solve efficiently many instances, especially when the GC constraint is tight. To explain why CPO struggles to solve the GCSP, we show that it is NP-Complete to decide whether there exist start times which satisfy the GC constraint given the sequence of jobs on each machine, even when there is no additional constraint. Finally, we introduce an hybrid framework where CPO cooperates with an Ant Colony Optimization (ACO) algorithm: ACO is used to learn good solutions which are given as starting points to CPO, and the solutions improved by CPO are given back to ACO. We experimentally evaluate this hybrid CPO-ACO framework and show that it strongly improves CPO performance. |
Databáze: | OpenAIRE |
Externí odkaz: |