Construction and smoothing of triangular Coons patches with geodesic boundary curves

Autor: Nicolas Szafran, Luc Biard, Rida T. Farouki
Přispěvatelé: Department of Mechanical and Aeronautical Engineering (MAE), University of California [Davis] (UC Davis), University of California-University of California, Modélisation Géométrique & Multirésolution pour l'Image (MGMI), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2010
Předmět:
Zdroj: Computer Aided Geometric Design
Computer Aided Geometric Design, Elsevier, 2010, 27 (4), pp.301-312. ⟨10.1016/j.cagd.2010.01.004⟩
ISSN: 0167-8396
DOI: 10.1016/j.cagd.2010.01.004
Popis: International audience; Given three regular space curves r1(t), r2(t), r3(t) for t in [0,1] that define a curvilinear triangle, we consider the problem of constructing a triangular surface patch R(u1,u2,u3) bounded by these three curves, such that they are geodesics of the constructed surface. Results from a prior study (Farouki et al., 2009a) concerned with tensor-product patches are adapted to identify constraints on the given curves for the existence of such geodesic-bounded triangular surface patches. For curves satisfying these conditions, the patch is constructed by means of a cubically-blended triangular Coons interpolation scheme. A formulation of thin-plate spline energy in terms of barycentric coordinates with respect to a general domain triangle is also derived, and used to optimize the smoothness of the geodesic-bounded triangular surface patches.
Databáze: OpenAIRE