Energy Shaping Control of a Muscular Octopus Arm Moving in Three Dimensions

Autor: Heng-Sheng Chang, Udit Halder, Chia-Hsien Shih, Noel Naughton, Mattia Gazzola, Prashant G. Mehta
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: Flexible octopus arms exhibit an exceptional ability to coordinate large numbers of degrees of freedom and perform complex manipulation tasks. As a consequence, these systems continue to attract the attention of biologists and roboticists alike. In this article, we develop a three-dimensional model of a soft octopus arm, equipped with biomechanically realistic muscle actuation. Internal forces and couples exerted by all major muscle groups are considered. An energy-shaping control method is described to coordinate muscle activity so as to grasp and reach in three-dimensional space. Key contributions of this article are as follows: (i) modelling of major muscle groups to elicit three-dimensional movements; (ii) a mathematical formulation for muscle activations based on a stored energy function; and (iii) a computationally efficient procedure to design task-specific equilibrium configurations, obtained by solving an optimization problem in the Special Euclidean group SE ( 3 ) . Muscle controls are then iteratively computed based on the co-state variable arising from the solution of the optimization problem. The approach is numerically demonstrated in the physically accurate software environment Elastica . Results of numerical experiments mimicking observed octopus behaviours are reported.
Databáze: OpenAIRE