A note on the maximal expected local time of $${\text {L}}_2$$-bounded martingales

Autor: Isaac Meilijson, Laura Sacerdote, David Gilat
Rok vydání: 2021
Předmět:
Zdroj: Journal of Theoretical Probability. 35:1952-1955
ISSN: 1572-9230
0894-9840
DOI: 10.1007/s10959-021-01118-0
Popis: For an $${\text {L}}_2$$ -bounded martingale starting at 0 and having final variance $$\sigma ^2$$ , the expected local time at $$a \in \text {R}$$ is at most $$\sqrt{\sigma ^2+a^2}-|a|$$ . This sharp bound is attained by Standard Brownian Motion stopped at the first exit time from the interval $$(a-\sqrt{\sigma ^2+a^2},a+\sqrt{\sigma ^2+a^2})$$ . In particular, the maximal expected local time anywhere is at most $$\sigma $$ , and this bound is sharp. Sharp bounds for the expected maximum, maximal absolute value, maximal diameter and maximal number of upcrossings of intervals have been established by Dubins and Schwarz (Societe Mathematique de France, Asterisque 157(8), 129–145 1988), by Dubins et al. (Ann Probab 37(1), 393–402 2009) and by the authors (2018).
Databáze: OpenAIRE