Convergence in games with continua of equilibria

Autor: Mathieu Faure, Sebastian Bervoets
Přispěvatelé: Aix-Marseille Sciences Economiques (AMSE), École des hautes études en sciences sociales (EHESS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), This work was supported by French National Research Agency Grants ANR-17-EURE-0020. Mathieu Faure gratefully acknowledges the support of the French National Research Agency, under grant ANR CIGNE (ANR-15-CE38-0007-01)., ANR-17-EURE-0020,AMSE (EUR),Aix-Marseille School of Economics(2017), ANR-15-CE38-0007,CIGNE,Communication et Information dans des Jeux dans des Réseaux(2015)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Mathematical Economics
Journal of Mathematical Economics, Elsevier, 2020, 90, pp.25-30. ⟨10.1016/j.jmateco.2020.05.006⟩
Journal of Mathematical Economics, 2020, 90, pp.25-30. ⟨10.1016/j.jmateco.2020.05.006⟩
ISSN: 0304-4068
Popis: International audience; In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.
Databáze: OpenAIRE