Zero-temperature phase diagram for double-well type potentials in the summable variation class

Autor: Philippe Thieullen, Rodrigo Bissacot, Eduardo Garibaldi
Přispěvatelé: Institute of Mathematics and Statistics [Sao Paulo] (IME-USP), Instituto de Matemática, Estatística e Computação Científica [Brésil] (IMECC), Universidade Estadual de Campinas (UNICAMP), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Zdroj: Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2018, 38 (3)
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1469-4417
0143-3857
DOI: 10.1017/etds.2016.57
Popis: We study the zero-temperature limit of the Gibbs measures of a class of long-range potentials on a full shift of two symbols $\{0,1\}$. These potentials were introduced by Walters as a natural space for the transfer operator. In our case, they are locally constant, Lipschitz continuous or, more generally, of summable variation. We assume there exists exactly two ground states: the fixed points $0^\infty$ and $1^\infty$. We fully characterize, in terms of the Peierls barrier between the two ground states, the zero-temperature phase diagram of such potentials, that is, the regions of convergence or divergence of the Gibbs measures as the temperature goes to zero.
27 pages, 2 figures. To appear in Ergodic Theory and Dynamical Systems
Databáze: OpenAIRE