Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing
Autor: | Licínio Manco, A. García-Orad, Teresa Fidalgo, Juan Carlos García-Ruiz, R. Del Orbe Barreto, Maria-Isabel Tejada, A. B. De la Hoz, Maria Leticia Ribeiro, Beatriz Arrizabalaga, Celeste Bento |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Heterozygote Clinical Biochemistry Biology Anemia Hemolytic Congenital Compound heterozygosity medicine.disease_cause DNA sequencing 03 medical and health sciences 0302 clinical medicine medicine Humans Gene Genetics Mutation Genetic heterogeneity Homozygote Biochemistry (medical) High-Throughput Nucleotide Sequencing EPB41 Sequence Analysis DNA Hematology General Medicine medicine.disease Haemolysis 030104 developmental biology 030220 oncology & carcinogenesis Congenital hemolytic anemia |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
ISSN: | 1751-5521 |
DOI: | 10.1111/ijlh.12551 |
Popis: | SummaryIntroduction Congenital haemolytic anaemia (CHA) refers to a group of genetically heterogeneous disorders, mainly caused by changes in genes encoding globin chains, cytoskeletal proteins and red cell enzymes, in which accurate diagnosis can be challenging with conventional techniques. Methods To set-up a comprehensive assay for detecting mutations that could improve aetiological diagnosis, we designed a custom panel for sequencing coding regions from 40 genes known to be involved in the pathogenesis of CHA, using the Ion Torrent™ (Thermo Fisher Scientific, S.L. Waltham, MA, USA) Personal Genome Machine (PGM) Sequencer. A control group of 16 samples with previously known mutations and a test group of 10 patients with unknown mutations were included for assay validation and application, respectively. Results In the test group, we identified pathogenic mutations in all cases: four patients had novel mutations in genes related to membrane defects (SPTB, ANK1, SLC4A1 and EPB41), four were homozygous or compound heterozygous for mutations in genes related to enzyme deficiencies (GPI, TPI1 and GSS), one had a mutation in the HBB gene and another presented a homozygous mutation in the ADAMTS13 gene. Conclusions Ion PGM sequencing with our custom panel is a highly efficient way to detect mutations causing haemolytic anaemia, including new variations. It is a high-throughput detection method that is ready for application in clinical laboratories. |
Databáze: | OpenAIRE |
Externí odkaz: |