Experimental Validation of a Dynamic Adsorption Chiller Model Using Optimal Experimental Design

Autor: Postweiler, Patrik, Gibelhaus, Andrej, Engelpracht, Mirko, Seiler, Jan Michael, Bardow, André
Přispěvatelé: Meyer, Thomas, Corrales, José, Graf, Rupert, Hüls, Walther, Kühn, Roland, Ziegler, Felix
Jazyk: angličtina
Rok vydání: 2020
Zdroj: ISHPC 2021 Proceedings: Online Pre-Conference 2020
Berlin : Technische Universität Berlin 28-32 (2020). doi:10.18154/RWTH-2020-09121
ISHPC 2021 proceedings – online pre-conference 2020 : August 17th, 2020, Technische Universität Berlin, Campus Charlottenburg / editor: Thomas Meyer, co-editors: José Corrales, Rupert Graf, Walther Hüls, Roland Kühn, Felix Ziegler
ISHPC 2021 proceedings – online pre-conference 2020 : August 17th, 2020, Technische Universität Berlin, Campus Charlottenburg / editor: Thomas Meyer, co-editors: José Corrales, Rupert Graf, Walther Hüls, Roland Kühn, Felix ZieglerInternational Sorption Heat Pump Conference 2021 : online pre-conference, ISHPC 2021, online, 2020-08-17-2020-08-17
DOI: 10.18154/rwth-2020-09121
Popis: A potential way to reduce the global greenhouse gas emissions for cooling and heating are thermally-driven cooling and heating technologies, such as sorption chillers. However, sorption chillers often suffer from high electricity consumption due to sub-optimal system integration. To optimize system integration, model-based approaches are very promising, but require valid models. For efficient model validation, we present a method based on the Optimal Experimental Design (OED) and apply the method to a dynamic adsorption chiller model. For this purpose, we plan an experiment with OED, execute it and estimate the unknown model parameters. To improve parameter accuracy and thus a valid model, we repeat the procedure iteratively. The results show that the presented method leads to a valid adsorption chiller model with only three optimally planned experiments. Furthermore, we show that the experimental effort decreases by up to 83 % compared to randomly planned experiments.
ISHPC 2021 Proceedings: Online Pre-Conference 2020
Databáze: OpenAIRE