Reducibility of representations induced from the Zelevinsky segment and discrete series
Autor: | Ivan Matić |
---|---|
Rok vydání: | 2020 |
Předmět: |
Induced representation
Discrete series representation Group (mathematics) General Mathematics 010102 general mathematics Sigma General linear group Algebraic geometry 01 natural sciences Combinatorics Number theory Discrete series 0103 physical sciences classical p-adic groups Zelevinsky segment discrete series 010307 mathematical physics 0101 mathematics Mathematics |
Zdroj: | manuscripta mathematica. 164:349-374 |
ISSN: | 1432-1785 0025-2611 |
DOI: | 10.1007/s00229-020-01187-1 |
Popis: | Let $$G_n$$ denote either the group $$SO(2n+1, F)$$ or Sp(2n, F) over a non-archimedean local field. We determine the reducibility criteria for a parabolically induced representation of the form $$\langle \Delta \rangle \rtimes \sigma $$ , where $$\langle \Delta \rangle $$ stands for a Zelevinsky segment representation of the general linear group and $$\sigma $$ stands for a discrete series representation of $$G_n$$ , in terms of the Mœglin-Tadic classification. |
Databáze: | OpenAIRE |
Externí odkaz: |