Bound on the radial derivatives of the Zernike circle polynomials (disk polynomials)

Autor: Augustus J. E. M. Janssen
Přispěvatelé: Stochastic Operations Research
Rok vydání: 2020
Předmět:
Zdroj: Indagationes Mathematicae, 31(5), 842-847. Elsevier
ISSN: 0019-3577
DOI: 10.1016/j.indag.2020.04.001
Popis: We sharpen the bound n 2 k on the maximum modulus of the k th radial derivative of the Zernike circle polynomials (disk polynomials) of degree n to n 2 ( n 2 − 1 2 ) ⋅ . . . ⋅ ( n 2 − ( k − 1 ) 2 ) ∕ 2 k ( 1 ∕ 2 ) k . This bound is obtained from a result of Koornwinder on the non-negativity of connection coefficients of the radial parts of the circle polynomials when expanded into a series of Chebyshev polynomials of the first kind. The new bound is shown to be attained within a factor O ( 1 ∕ n ) for Zernike circle polynomials of degree n and azimuthal order m when m = O ( n ) by using an explicit expression for the connection coefficients in terms of squares of Jacobi polynomials evaluated at 0.
Databáze: OpenAIRE