Flight Deployment of a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species
Autor: | Joel A. Thornton, Jason C. Schroder, Lyatt Jaeglé, Marc N. Fiddler, Steven S. Brown, P. J. Wooldridge, Ronald C. Cohen, Siddharth Iyer, Pedro Campuzano-Jost, Patrick R. Veres, Dorothy L. Fibiger, C. J. Ebben, Jose L. Jimenez, Solomon Bililign, Theo Kurtén, Erin E. McDuffie, Andrew J. Weinheimer, T. Sparks, Siegfried Schobesberger, Felipe D. Lopez-Hilfiker, Ben H. Lee, J. R. Green, Emma L. D'Ambro |
---|---|
Přispěvatelé: | Department of Chemistry |
Rok vydání: | 2018 |
Předmět: |
flight deployment
atmospheric chemistry Atmospheric Science 010504 meteorology & atmospheric sciences Resolution (mass spectrometry) instrument development 116 Chemical sciences MOLECULAR COMPOSITION Analytical chemistry URBAN OZONE FORMATION 010501 environmental sciences Mass spectrometry 114 Physical sciences 01 natural sciences chemistry.chemical_compound Earth and Planetary Sciences (miscellaneous) POWER-PLANT PLUMES ORGANIC AEROSOL Nitryl chloride 0105 earth and related environmental sciences NITRYL CHLORIDE Chemical ionization UPPER TROPOSPHERE Chemistry INDUCED FLUORESCENCE INSTRUMENT BOUNDARY-LAYER SOUTHEAST TEXAS SULFUR-DIOXIDE Time of flight Geophysics HRToF-CIMS 13. Climate action Space and Planetary Science Atmospheric chemistry Halogen Nitrogen oxide |
Zdroj: | Journal of Geophysical Research: Atmospheres. |
ISSN: | 2169-897X |
DOI: | 10.1029/2017jd028082 |
Popis: | We describe the University of Washington airborne high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) and evaluate its performance aboard the NCAR-NSF C-130 aircraft during the recent Wintertime INvestigation of Transport, Emissions and Reactivity (WINTER) experiment in February-March of 2015. New features include (i) a computer-controlled dynamic pinhole that maintains constant mass flow-rate into the instrument independent of altitude changes to minimize variations in instrument response times; (ii) continuous addition of low flow-rate humidified ultrahigh purity nitrogen to minimize the difference in water vapor pressure, hence instrument sensitivity, between ambient and background determinations; (iii) deployment of a calibration source continuously generating isotopically labeled dinitrogen pentoxide ((N2O5)-N-15) for in-flight delivery; and (iv) frequent instrument background determinations to account for memory effects resulting from the interaction between sticky compounds and instrument surface following encounters with concentrated air parcels. The resulting improvements to precision and accuracy, along with the simultaneous acquisition of these species and the full set of their isotopologues, allow for more reliable identification, source attribution, and budget accounting, for example, by speciating the individual constituents of nocturnal reactive nitrogen oxides (NOz=ClNO2+2xN(2)O(5)+HNO3+etc.). We report on an expanded set of species quantified using iodide-adduct ionization such as sulfur dioxide (SO2), hydrogen chloride (HCl), and other inorganic reactive halogen species including hypochlorous acid, nitryl chloride, chlorine, nitryl bromide, bromine, and bromine chloride (HOCl, ClNO2, Cl-2, BrNO2, Br-2, and BrCl, respectively). |
Databáze: | OpenAIRE |
Externí odkaz: |