Popis: |
The phenyltris[(tert-butylthio)methyl]borate ligand, [PhTt tBu], has been studied extensively as a platform for coordination, organometallic, and bioinorganic chemistry, especially with 3d metals. While [PhTt tBu]Co(3,5-DBCatH) (3,5-DBCatH is 3,5-di-tert-butylcatecholate), a CoII–monoanionic catecholate complex, was successfully isolated to model the active site of cobalt(II)-substituted homoprotocatechuate 2,3-dioxygenase (Co-HPCD) [Wang et al. (2019). Inorg. Chim. Acta, 488, 49–55], its iron(II) counterpart, [PhTt tBu]Fe(3,5-DBCatH), was not accessible via similar synthetic routes. Switching the nucleophile from catecholate to alkoxide or aryloxide, however, led to the successful isolation of three highly air-sensitive FeII–alkoxide and –aryloxide complexes, namely, (triphenylmethoxo){tris[(tert-butylsulfanyl)methyl]phenylborato-κ3 S,S′,S′′}iron(II), [Fe(C21H38BS3)(C19H15O)], (2), (2,6-dimethylphenolato){tris[(tert-butylsulfanyl)methyl]phenylborato-κ3 S,S′,S′′}iron(II), [Fe(C21H38BS3)(C8H9O)], (3), and bis{μ-tris[(tert-butylsulfanyl)methyl]phenylborato-κ3 S,S′:S′′}bis[(phenolato-κO)iron(II)] toluene disolvate, [Fe2(C21H38BS3)2(C6H5O)2]·2C7H8, (4). In the solid state, compounds (2) and (3) are monomeric, with [PhTt tBu] acting as a tridentate ligand. In contrast, compound (4) crystallizes as a dimeric complex, wherein each [PhTt tBu] ligand binds to an iron centre with two thioethers and binds to the other iron centre with the third thioether. The molecular structures of (2)–(4) demonstrate a diversity in the binding modes of [PhTt tBu] and highlight its potential use for assembling multinuclear complexes. In addition, the successful isolation of (2)–(4), as well as the structural information of a [PhTt tBu] modification product, namely, bis{μ-tris[(tert-butylsulfanyl)methyl](2-oxidophenolato)borato-κO,O′,S,S′:O′}dicobalt(II), [Co2(C21H37BO2S3)2], (5), obtained from the reaction of [PhTt tBu]CoCl with potassium monoanionic catecholate, shed light on the origin of the instability of [PhTt tBu]Fe(3,5-DBCatH). |