Dimers of boroglycine and methylamine boronic acid: a computational comparison of the relative importance of dative versus hydrogen bonding

Autor: Charles W. Bock, Matthew Milkevitch, George D. Markham, Bernard R. Brooks, Joseph D. Larkin, Krishna L. Bhat
Rok vydání: 2007
Předmět:
Zdroj: The journal of physical chemistry. A. 112(1)
ISSN: 1089-5639
Popis: Boronic acids are widely used in materials science, pharmacology, and the synthesis of biologically active compounds. In this Article, geometrical structures and relative energies of dimers of boroglycine, H2N-CH2-B(OH)2, and its constitutional isomer H3C-NH-B(OH)2, were computed using second-order Møller-Plesset perturbation theory and density functional theory; Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the MP2 calculations, and the Pople 6-311++G(d,p) basis set was employed for a majority of the DFT calculations. Effects of an aqueous environment were incorporated into the results using PCM and COSMO-RS methodology. The lowest-energy conformer of the H2N-CH2-B(OH)2 dimer was a six-membered ring structure (chair conformation; Ci symmetry) with two intermolecular B:N dative-bonds; it was 14.0 kcal/mol lower in energy at the MP2/aug-cc-pVDZ computational level than a conformer with the classic eight-centered ring structure (Ci symmetry) in which the boroglycine monomers are linked by a pair of H-O...H bonds. Compared to the results of MP2 calculations with correlation-consistent basis sets, DFT calculations using the PBE1PBE and TPSS functionals with the 6-311++G(d,p) basis set were significantly better at predicting relative conformational energies of the H2N-CH2-B(OH)2 and H3C-NH-B(OH)2 dimers than corresponding calculations using the BLYP, B3LYP, OLYP, and O3LYP functionals, particularly with respect to dative-bonded structures.
Databáze: OpenAIRE