Autor: |
Stevan Pilipović, Teodor M. Atanackovic, Marko Janev |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Acta Mechanica. 232(3):1131-1146 |
ISSN: |
0001-5970 |
DOI: |
10.1007/s00707-020-02893-3 |
Popis: |
A variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated, and the invariance of this principle under the action of a local group of symmetries is determined. By the Noether theorem the conservation law for the corresponding fractional Euler–Lagrange equation is obtained. A sequence of approximations of a fractional Euler–Lagrange equation by systems of integer order equations is used for the construction of a sequence of conservation laws which, with certain assumptions, weakly converge to the one for the basic Herglotz variational principle. Results are illustrated by two examples. © 2021, Springer-Verlag GmbH Austria, part of Springer Nature. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|