Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives

Autor: Stevan Pilipović, Teodor M. Atanackovic, Marko Janev
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Acta Mechanica. 232(3):1131-1146
ISSN: 0001-5970
DOI: 10.1007/s00707-020-02893-3
Popis: A variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated, and the invariance of this principle under the action of a local group of symmetries is determined. By the Noether theorem the conservation law for the corresponding fractional Euler–Lagrange equation is obtained. A sequence of approximations of a fractional Euler–Lagrange equation by systems of integer order equations is used for the construction of a sequence of conservation laws which, with certain assumptions, weakly converge to the one for the basic Herglotz variational principle. Results are illustrated by two examples. © 2021, Springer-Verlag GmbH Austria, part of Springer Nature.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje