Hilbert Series, Machine Learning, and Applications to Physics
Autor: | Yang-Hui He, Jiakang Bao, Johannes Hofscheier, Suvajit Majumder, Alexander Kasprzyk, Edward Hirst |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Physics Letters |
ISSN: | 0370-2693 |
DOI: | 10.48550/arxiv.2103.13436 |
Popis: | We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${\sim}1$ mean absolute error, whilst classifiers predict dimension and Gorenstein index to $>90\%$ accuracy with ${\sim}0.5\%$ standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding $95\%$. Neural networks (NNs) exhibited success identifying HS from a Gorenstein ring to the same order of accuracy, whilst generation of 'fake' HS proved trivial for NNs to distinguish from those associated to the three-dimensional Fano varieties considered. 10 pages; v2: principle component analysis added; v3: minor corrections |
Databáze: | OpenAIRE |
Externí odkaz: |