On the Luzin N-property and the uncertainty principle for Sobolev mappings

Autor: Mikhail V. Korobkov, Alba Roviello, Adele Ferone
Přispěvatelé: Ferone, Adele, Korobkov, Mikhail V., Roviello, Alba
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Anal. PDE 12, no. 5 (2019), 1149-1175
ISSN: 1149-1175
Popis: We say that a mapping [math] satisfies the [math] - [math] -property if [math] whenever [math] , where [math] means the Hausdorff measure. We prove that every mapping [math] of Sobolev class [math] with [math] satisfies the [math] - [math] -property for every [math] with ¶ [math] ¶ We prove also that for [math] and for the critical value [math] the corresponding [math] - [math] -property fails in general. Nevertheless, this [math] - [math] -property holds for [math] if we assume in addition that the highest derivatives [math] belong to the Lorentz space [math] instead of [math] . ¶ We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some Fubini-type theorems for [math] -Nproperties and discuss their applications to the Morse–Sard theorem and its recent extensions.
Databáze: OpenAIRE