Solving the advection-diffusion equations in biological contexts using the cellular Potts model

Autor: Chris Mueller, James A. Glazier, Debasis Dan, Kun Chen
Rok vydání: 2005
Předmět:
Zdroj: Physical Review E. 72
ISSN: 1550-2376
1539-3755
DOI: 10.1103/physreve.72.041909
Popis: The cellular Potts model (CPM) is a robust, cell-level methodology for simulation of biological tissues and morphogenesis. Both tissue physiology and morphogenesis depend on diffusion of chemical morphogens in the extra-cellular fluid or matrix (ECM). Standard diffusion solvers applied to the cellular potts model use finite difference methods on the underlying CPM lattice. However, these methods produce a diffusing field tied to the underlying lattice, which is inaccurate in many biological situations in which cell or ECM movement causes advection rapid compared to diffusion. Finite difference schemes suffer numerical instabilities solving the resulting advection-diffusion equations. To circumvent these problems we simulate advection diffusion within the framework of the CPM using off-lattice finite-difference methods. We define a set of generalized fluid particles which detach advection and diffusion from the lattice. Diffusion occurs between neighboring fluid particles by local averaging rules which approximate the Laplacian. Directed spin flips in the CPM handle the advective movement of the fluid particles. A constraint on relative velocities in the fluid explicitly accounts for fluid viscosity. We use the CPM to solve various diffusion examples including multiple instantaneous sources, continuous sources, moving sources, and different boundary geometries and conditions to validate our approximation against analytical and established numerical solutions. We also verify the CPM results for Poiseuille flow and Taylor-Aris dispersion.
Databáze: OpenAIRE