The Sklyanin bracket and cluster adjacency at all multiplicity
Autor: | John Golden, Andrew J. McLeod, Marcus Spradlin, Anastasia Volovich |
---|---|
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics 010308 nuclear & particles physics FOS: Physical sciences Multiplicity (mathematics) Symbolic computation 01 natural sciences Loop integral Supersymmetric Gauge Theory Combinatorics Scattering amplitude Poisson bracket High Energy Physics - Theory (hep-th) Supersymmetric gauge theory 0103 physical sciences lcsh:QC770-798 MHV amplitudes Adjacency list lcsh:Nuclear and particle physics. Atomic energy. Radioactivity Scattering Amplitudes 010306 general physics |
Zdroj: | Journal of High Energy Physics Journal of High Energy Physics, Vol 2019, Iss 3, Pp 1-21 (2019) |
ISSN: | 1029-8479 |
DOI: | 10.1007/jhep03(2019)195 |
Popis: | We argue that the Sklyanin Poisson bracket on Gr(4,n) can be used to efficiently test whether an amplitude in planar ${\cal{N}}=4$ supersymmetric Yang-Mills theory satisfies cluster adjacency. We use this test to show that cluster adjacency is satisfied by all one- and two-loop MHV amplitudes in this theory, once suitably regulated. Using this technique we also demonstrate that cluster adjacency implies the extended Steinmann relations at all particle multiplicities. 25 pages; v2: added reference |
Databáze: | OpenAIRE |
Externí odkaz: |