Two-stage common weight DEA-Based approach for performance evaluation with imprecise data
Autor: | E. Ertugrul Karsak, Nazli Goker |
---|---|
Rok vydání: | 2021 |
Předmět: |
Economics and Econometrics
Mathematical optimization 021103 operations research Computer science Strategy and Management 05 social sciences Geography Planning and Development 0211 other engineering and technologies 02 engineering and technology Management Science and Operations Research Power (physics) Set (abstract data type) Operator (computer programming) Ranking Robustness (computer science) 0502 economics and business Data envelopment analysis Statistical dispersion Stage (hydrology) 050207 economics Statistics Probability and Uncertainty |
Zdroj: | Socio-Economic Planning Sciences. 74:100943 |
ISSN: | 0038-0121 |
Popis: | A multi-criteria decision making approach based on data envelopment analysis (DEA) is presented to identify the best performing decision making unit (DMU) accounting for multiple inputs and multiple outputs with the presence of imprecise data. The developed α-cut based two-stage mathematical programming approach, which yields feasible solutions for all α-cut levels, generates common set of weights for inputs and outputs, and thus, provides more practical and realistic performance assessment of DMUs. A single rank-order is obtained through OWA operator that is employed for aggregating the efficiency scores regarding α-levels for each DMU. The robustness of the developed methodology is illustrated by examples taken from earlier research studies along with a case study that is conducted to aid an expatriate to identify the most desirable country in terms of quality of living. The proposed approach provides a ranking with improved discriminating power and enhanced weight dispersion with regard to inputs and outputs while also guaranteeing to determine a single best performing DMU. |
Databáze: | OpenAIRE |
Externí odkaz: |