A Note on the Manin-Mumford Conjecture
Autor: | Damian Roessler |
---|---|
Přispěvatelé: | Arxiv, Import, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2005 |
Předmět: |
Pure mathematics
Conjecture Mathematics - Number Theory Mathematics::Number Theory 010102 general mathematics [MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] Combinatorial proof 0102 computer and information sciences Algebraic geometry 01 natural sciences Haboush's theorem [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Mathematics - Algebraic Geometry Number theory Mathematics::Algebraic Geometry 010201 computation theory & mathematics FOS: Mathematics 14G05 Number Theory (math.NT) [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] 0101 mathematics Algebraic Geometry (math.AG) Analytic proof Mathematics [MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] |
Zdroj: | Number Fields and Function Fields—Two Parallel Worlds ISBN: 9780817643973 |
ISSN: | 0743-1643 |
Popis: | In the article [PR1] {\it On Hrushovski's proof of the Manin-Mumford conjecture} (Proceedings of the ICM 2002), R. Pink and the author gave a short proof of the Manin-Mumford conjecture, which was inspired by an earlier model-theoretic proof by Hrushovski. The proof given in [PR1] uses a difficult unpublished ramification-theoretic result of Serre. It is the purpose of this note to show how the proof given in [PR1] can be modified so as to circumvent the reference to Serre's result. J. Oesterl\'e and R. Pink contributed several simplifications and shortcuts to this note. Comment: 11 pages |
Databáze: | OpenAIRE |
Externí odkaz: |