Modeling Precipitate Dissolution in Hardened Aluminium Alloys using Neural Networks
Autor: | B. Ducoeur, R. Lopez, C. Agelet de Saracibar, B. de Meester, Michele Chiumenti |
---|---|
Rok vydání: | 2008 |
Předmět: |
Engineering
Civil Materials science Artificial neural network Metallurgy chemistry.chemical_element Activation energy Engineering Marine Engineering Mechanical chemistry Aluminium Multilayer perceptron Engineering Industrial Hardening (metallurgy) General Materials Science Inverse analysis Dissolution |
Zdroj: | Scipedia Open Access Scipedia SL |
ISSN: | 1960-6214 1960-6206 |
DOI: | 10.1007/s12289-008-0139-4 |
Popis: | This work presents a neural networks approach for finding the effective activation energy and modeling the dissolution rate of hardening precipitates in aluminium alloys using inverse analysis. As way of illustration, a class of multilayer perceptron extended with independent parameters is applied for that purpose to aluminium alloys AA-7449-T79, AA-2198-T8 and AA-6005A-T6. |
Databáze: | OpenAIRE |
Externí odkaz: |