Modeling Precipitate Dissolution in Hardened Aluminium Alloys using Neural Networks

Autor: B. Ducoeur, R. Lopez, C. Agelet de Saracibar, B. de Meester, Michele Chiumenti
Rok vydání: 2008
Předmět:
Zdroj: Scipedia Open Access
Scipedia SL
ISSN: 1960-6214
1960-6206
DOI: 10.1007/s12289-008-0139-4
Popis: This work presents a neural networks approach for finding the effective activation energy and modeling the dissolution rate of hardening precipitates in aluminium alloys using inverse analysis. As way of illustration, a class of multilayer perceptron extended with independent parameters is applied for that purpose to aluminium alloys AA-7449-T79, AA-2198-T8 and AA-6005A-T6.
Databáze: OpenAIRE