Is catalase involved in the effects of systemic and pVTA administration of 4-methylpyrazole on ethanol self-administration?

Autor: Simona Porru, Pier Andrea Serra, Michela Rosas, Francesca A. Pintus, Gaia Giovanna Maria Rocchitta, Federico Bennardini, Alessandra Tiziana Peana, Gianfranco Bazzu, Elio Maria Gioachino Acquas
Rok vydání: 2017
Předmět:
Zdroj: Alcohol. 63:61-73
ISSN: 0741-8329
Popis: The oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (H 2 O 2 ). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of H 2 O 2 , a mechanism that may indirectly affect catalase whose enzymatic activity requires H 2 O 2 . The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.p. [intraperitoneal]) and local (into the posterior ventral tegmental area, pVTA) administration of 4-MP on oral ethanol self-administration, and 2) to assess ex vivo whether or not systemic 4-MP affects liver and brain H 2 O 2 availability. The results show that systemic 4-MP reduced ethanol but not acetaldehyde or saccharin self-administration, and decreased the ethanol deprivation effect. Moreover, local intra-pVTA administration of 4-MP reduced ethanol but not saccharin self-administration. In addition, although unable to affect basal catalase activity, systemic administration of 4-MP decreased H 2 O 2 availability both in liver and in brain. Overall, these results indicate that 4-MP interferes with ethanol self-administration and suggest that its behavioral effects could be due to a decline in catalase-H 2 O 2 system activity as a result of a reduction of H 2 O 2 availability, thus highlighting the role of central catalase-mediated metabolism of ethanol and further supporting the key role of acetaldehyde in the reinforcing properties of ethanol.
Databáze: OpenAIRE