Asymptotic Exponential Law for the Transition Time to Equilibrium of the Metastable Kinetic Ising Model with Vanishing Magnetic Field
Autor: | Maria Eulália Vares, Paolo Milanesi, Alexandre Gaudillière |
---|---|
Přispěvatelé: | Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Instituto de Matemática da Universidade Federal do Rio de Janeiro (IM / UFRJ), Universidade Federal do Rio de Janeiro (UFRJ), M. E. V. acknowledges partial support of CNPq (grant 305075/2016-0) and Faperj E-26/203.948/2016., Instituto de Matemática (UFRJ), Universidade Federal do Rio de Janeiro [Rio de Janeiro] (UFRJ) |
Rok vydání: | 2020 |
Předmět: |
quasi-stationary measures
quasi-stationary mea- sures Boundary (topology) Glauber dynamics 01 natural sciences 010305 fluids & plasmas potential theory Metastability 0103 physical sciences FOS: Mathematics MSC 2010: primary: 82C20 secondary: 60J27 60J45 60J75 Statistical physics Boundary value problem relaxation time 010306 general physics Mathematical Physics Mixing (physics) Physics Spins Probability (math.PR) Relaxation (NMR) exponential law Statistical and Nonlinear Physics Exponential function Magnetic field [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] Ising model Mathematics - Probability |
Zdroj: | Journal of Statistical Physics Journal of Statistical Physics, 2020, 179 (2), pp.263-308. ⟨10.1007/s10955-019-02463-5⟩ Journal of Statistical Physics, Springer Verlag, 2020, 179 (2), pp.263-308. ⟨10.1007/s10955-019-02463-5⟩ |
ISSN: | 1572-9613 0022-4715 |
DOI: | 10.1007/s10955-019-02463-5 |
Popis: | International audience; We consider a Glauber dynamics associated with the Ising model on a large two-dimensional box with with minus boundary conditions and in the limit of a vanishing positive external magnetic field. The volume of this box increases quadratically in the inverse of the magnetic field. We show that at subcritical temperature and for a large class of starting measures, including measures that are supported by configurations with macroscopic plus-spin droplets, the system rapidly relaxes to some metastable equilibrium ---with typical configurations made of microscopic plus-phase droplets in a sea of minus spins--- before making a transition at an asymptotically exponential random time towards equilibrium ---with typical configurations made of microscopic minus-phase droplets in a sea of plus spins inside a large contour that separates this plus phase from the boundary. We get this result by bounding from above the local relaxation times towards metastable and stable equilibria. This makes possible to give a pathwise description of such a transition, to control the asymptotic behaviour of the mixing time in terms of soft capacities and to give estimates of these capacities. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |